Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
authorea preprints; 2022.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.165087013.35210434.v1

ABSTRACT

Background: The recently emerged SARS-CoV-2 Omicron variant exhibits several mutations on the spike protein, enabling it to escape the immunity elicited by natural infection or vaccines. Avidity is the strength of binding between an antibody and its specific epitope. The SARS-CoV-2 spike protein binds to its cellular receptor with high affinity, and is the primary target of neutralizing antibodies. Therefore, protective antibodies should show high avidity. This study aimed at investigating the avidity of receptor-binding domain (RBD) binding antibodies and their neutralizing activity against the Omicron variant in COVID-19 patients and vaccinees. Methods: . Samples collected from COVID-19 patients and from subjects who received homologous or heterologous vaccination were tested for the avidity of RBD-binding IgG and neutralizing antibodies against the wild-type SARS-CoV-2 virus and the Omicron variant. Results: . In patients, RBD-binding IgG titres against the wild-type virus increased with time, but remained low. High neutralizing titres against the wild-type virus were not matched by high avidity or neutralizing activity against the Omicron variant. Vaccinees showed higher avidity than patients. Two vaccine doses elicited the production of neutralizing antibodies, but low avidity for the wild-type virus; antibody levels against the Omicron variant were even lower. Conversely, 3 doses of vaccine elicited high avidity and high neutralizing antibodies against both the wild-type virus and the Omicron variant. Conclusions: . Repeated vaccination increases antibody avidity against the spike protein of the Omicron variant, suggesting that antibodies with high avidity and high neutralizing potential increase cross-protection against variants that carry several mutations on the RBD.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.29.21254534

ABSTRACT

SARS-CoV-2 pandemic is causing high morbidity and mortality burden worldwide with unprecedented strain on health care systems. To elucidate the mechanism of infection, protection, or rapid evolution until fatal outcome of the disease we performed a study in hospitalized COVID-19 patients to investigate the time course of the antibody response in relation to the outcome. In comparison we investigated the time course of the antibody response in SARS-CoV-2 asymptomatic subjects. Study results show that patients produce a strong antibody response to SARS-CoV-2 with high correlation between different viral antigens (spike protein and nucleoprotein) and among antibody classes (IgA, IgG, and IgM and neutralizing antibodies). The peak is reached by 3 weeks from hospital admission followed by a sharp decrease. No difference was observed in any parameter of the antibody classes, including neutralizing antibodies, between subjects who recovered or with fatal outcome. Only few asymptomatic subjects developed antibodies at detectable levels.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL